Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(13): 3282-3291, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38487900

ABSTRACT

Sonodynamic therapy (SDT), an emerging cancer treatment with significant potential, offers the advantages of non-invasiveness and deep tissue penetrability. The method involves activating sonosensitizers with ultrasound to generate reactive oxygen species (ROS) capable of eradicating cancer cells, addressing the challenge faced by photodynamic therapy (PDT) where conventional light sources struggle to penetrate deep tissues, impacting treatment efficacy. This study addresses prevalent challenges in numerous nanodiagnostic and therapeutic agents, such as intricate synthesis, poor repeatability, low stability, and high cost, by introducing a streamlined one-step assembly method for nanoparticle preparation. Specifically, the sonosensitizer Chlorin e6 (Ce6) and the chemotherapy drug erlotinib are effortlessly combined and self-assembled under sonication, yielding carrier-free nanoparticles (EC-NPs) for non-small cell lung cancer (NSCLC) treatment. The resulting EC-NPs exhibit optimal drug loading capacity, a simplified preparation process, and robust stability both in vitro and in vivo, owing to their carrier-free characteristics. Under the synergistic treatment of sonodynamic therapy and chemotherapy, EC-NPs induce an excess of reactive oxygen in tumor tissue, prompting apoptosis of cancer cells and reducing their proliferative capacity. Both in vitro and in vivo experiments demonstrate superior therapeutic effects of EC-NPs under ultrasound conditions compared to free Ce6. In summary, our research findings highlight that the innovatively designed carrier-free sonosensitizer EC-NPs present a therapeutic option with commendable efficacy and minimal side effects.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chlorophyllides , Lung Neoplasms , Nanoparticles , Photochemotherapy , Humans , Photochemotherapy/methods
2.
Biomacromolecules ; 24(5): 2225-2236, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37040694

ABSTRACT

The design of nano-drug delivery vehicles responsive to tumor microenvironment stimuli has become a crucial aspect in developing cancer therapy in recent years. Among them, the enzyme-responsive nano-drug delivery system is particularly effective, as it utilizes tumor-specific and highly expressed enzymes as precise targets, leading to increased drug release at the target sites, reduced nonspecific release, and improved efficacy while minimizing toxic side effects on normal tissues. NAD(P)H:quinone oxidoreductase 1 (NQO1) is an important reductase associated with cancer and is overexpressed in some cancer cells, particularly in lung and breast cancer. Thus, the design of nanocarriers with high selectivity and responsiveness to NQO1 is of great significance for tumor diagnosis and treatment. It has been reported that under physiological conditions, NQO1 can specifically reduce the trimethyl-locked benzoquinone structure through a two-electron reduction, resulting in rapid lactonization via an enzymatic reaction. Based on this, a novel reduction-sensitive polyurethane (PEG-PTU-PEG) block copolymer was designed and synthesized by copolymerizing diisocyanate, a reduction-sensitive monomer (TMBQ), and poly(ethylene glycol). The successful synthesis of monomers and polymers was verified by nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Then, the PEG-PTU-PEG micelles were successfully prepared by self-assembly, and their reductive dissociation behavior in the presence of Na2S2O4 was verified by dynamic light scattering (DLS), 1H NMR, and GPC. Next, the model drug doxorubicin (DOX) was encapsulated into the hydrophobic core of this polyurethane micelles by microemulsion method. It was observed that the drug-loaded micelles could also achieve a redox response and rapidly release the encapsulated substances. In vitro cell experiments demonstrated that PEG-PTU-PEG micelles had good biocompatibility and a low hemolysis rate (<5%). Furthermore, in the presence of an NQO1 enzyme inhibitor (dicoumarol), lower drug release from micelles was observed in A549 and 4T1 cells by both fluorescence microscopy and flow cytometry assays, but not in NIH-3T3 control cells. Predictably, DOX-loaded micelles also showed lower cytotoxicity in 4T1 cells in the presence of NQO1 enzyme inhibitors. These results indicate that drug-loaded polyurethane micelles could accomplish specific drug release in the reducing environment in the presence of NQO1 enzymes. Therefore, this study provides a new option for the construction of polyurethane nanocarriers for precise targeting and reductive release, which could benefit the intracellular drug-specific release and precision therapy of tumors.


Subject(s)
Micelles , Polyurethanes , Drug Liberation , Doxorubicin , Polymers/chemistry , Polyethylene Glycols/chemistry , Oxidation-Reduction , Drug Carriers/chemistry , Drug Delivery Systems
3.
Biomacromolecules ; 23(8): 3243-3256, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35862795

ABSTRACT

In this study, a novel donor-acceptor conjugated polymer PDPPDTP was designed and synthesized by D-A polymerization using 2,6-di(trimethyltin)-N-dithieno[3,2-b:20,30-d]pyrrole as the electron-donating (D) unit and 3,6-bis(5-bromothiophen-2-yl)-2,5-dihexadecylpyrrolo[3,4-c]pyrrole-1,4-dione as the electron-accepting (A) unit. The prepared polymer has strong absorption in the near-infrared (NIR) range of 700-900 nm. Moreover, it shows excellent photothermal performance under irradiation at 808 nm. Next, the biodegradable amphiphilic polymer polyethylene glycol-polycaprolactone was used to encapsulate the new conjugated polymer into nanomicelles by the microemulsion method. The obtained PDPPDTP-loaded micelles exhibited a regular spherical structure, and their hydrodynamic diameter was about 78 nm, characterized by transmission electron microscopy and dynamic light scattering. Notably, the micelles exhibited good stability, and the encapsulation efficiency of the conjugated polymer in the micelles was ∼80%. In vitro cell experiments demonstrated that the nanomicelles not only showed good biocompatibility and low toxicity but also could effectively inhibit the proliferation of breast cancer cells 4T1 under the NIR light irradiation of 808 nm. Furthermore, in vivo studies of photothermal therapy (PTT) efficacy showed that the PDPPDTP-loaded micelles exhibited a remarkable tumor growth inhibition in a syngeneic murine tumor model, indicating that the nanomicelles loaded with this novel conjugated polymer could be further explored as a new type of theranostic agent and applied in the PTT of tumors.


Subject(s)
Nanoparticles , Neoplasms , Animals , Humans , Mice , Micelles , Nanoparticles/chemistry , Neoplasms/pathology , Phototherapy , Photothermal Therapy , Polymers/chemistry , Pyrroles
SELECTION OF CITATIONS
SEARCH DETAIL
...